Hominy Swamp Stream Restoration

EEP Project No: 180

2005 Annual Monitoring Report4th Year of 5-year Monitoring Plan

Submitted to: NCDENR/Ecosystem Enhancement Program

1619 Mail Service Center Raleigh, NC 27699-1619

March 6, 2006

TABLE OF CONTENTS

Prepared by: Rummel, Klepper and Kahl, LLP Consulting Engineers 900 Ridgefield Dr., Suite 350 Raleigh, NC 27609

Design Firm: KCI Associates of North Carolina, P.A.

1.0	Exe	cutive S	umma	ry/Project Absti	ract .	•	•	•	•	•		•	1
2.0	Proj	ect Back	kgroun	d									1
	2.1	Lo	cation	and Setting									1
	2.2			on Structure and									
	2.3			History and Bac									
	2.4			ng Plan View									
3.0	Proj	ect Cond	dition	and Monitoring	Results								5
	3.1	Ve	egetati	on Assessment									5
		3.1.1	Soil	Data									5
		3.1.2	Veg	getative Problem	1 Areas								5
		3.1.3	Veg	getative Problen	n Area Pl	an V	iew						5
		3.1.4	_	n Counts .									
		3.1.5		getation Plot Pho									
	3.2			Assessment.									
		3.2.1	Pro	cedural Items									6
		3.2		Morphometric									
		3.2	2.1.b	Hydrologic Cr	riteria								7
		3.2	2.1.c	Bank Stability	Assessn	nent							7
		3.2.2	Pro	blem Areas Plai	n View (S	Strea	m)						7
		3.2.3	Pro	blem Areas Tab	ole .								7
		3.2.4	Nur	nbered Issue Ph	otos Sec	tion							8
		3.2.5		ed Station Photo									
		3.2.6		oility Assessmen									
		3.2.7		intitative Measu									

TABLES

Table 1.	Project Structure and Objectives Table			1
Table II.	Project Activity and Reporting History			2
Table III.	Project Contact Table			2
Table IV.	Project Background Table			2
Table V.	Preliminary Soil Data			
Table VI.	Vegetative Problem Areas			5
Table VII.	Stem counts for each species arranged by plot			6
Table VIII.	Verification of Bankfull Events			7
Table IX.	BEHI and Sediment Export Estimates	•	•	7
Table X.	Stream Problem Areas			7
Table XI.	Categorical Stream Feature Visual Stability Assessment			8
Table XII.	Baseline Morphology and Hydraulic Summary			9
Table XIII.	Morphology and Hydraulic Monitoring Summary .			10

FIGURES

Figure 1 Project Site Map

Figure 2 Aerial Watershed Photo

APPENDIX A – VEGETATION RAW DATA

- A.1 Vegetative Problem Area Plan View
- A.2 Vegetation Problem Areas Photos
- A.3 Vegetation Monitoring Plot Photos

APPENDIX B – GEOMORPHOLOGIC RAW DATA

- B.1 Problem Areas Plan View (Stream)
- B.2 Stream Problem Area Photos
- **B.3 Stream Cross Section Photos**
- B.4 Cross section Plots and Raw Data Tables

Exhibit cross section

B.5 Longitudinal Plots and Raw Data Tables

Exhibit Longitudinal Profile

Exhibit Raw Data Tables for Slope

- B.6 Pebble Count Plots and Raw Data Tables
- B.7 Table B.1. Categorical Stream Feature Visual Stability Assessment

1.0 Executive Summary/Project Abstract

Hominy Swamp Creek was restored through the North Carolina Wetlands Restoration Program (NCWRP). The objectives of the project are to:

- 1.) Establish an stable dimension, pattern and profile on 2,232 feet of Hominy Swamp Creek
- 2.) Improve habitat within Hominy Swamp Creek
- 3.) Establish an riparian buffer along Hominy Swamp Creek
- 4.) Incorporate this project into a watershed wide management plan

This is the 4th year of the 5-year monitoring plan for Hominy Swamp Creek.

Overall, while the majority of the stream is functioning well and holding grade, the stream has areas of concern and areas of immediate need. Table X shows a summary of identified problem areas within the project reach. Channel dimension and pattern are similar to as-built conditions with the exceptions of the noted areas of bank slumping. The channel profile is void of defined bed features and is dominated by runs and pools. Placed structures are holding grade and functioning well.

Vegetation is not succeeding to levels required for mitigation credit.

2.0 Project Background

2.1 Location and Setting

The project is located within the city limits of Wilson, North Carolina. From Raleigh, take US 64 BYP East to US 64 then US 264 (Wilson exit). Proceed east on US 264 to Exit 36B, US 264 ALT East (Raleigh Road). Continue into Wilson on Raleigh Road until you reach Ripley Road. Turn left (north) on Ripley Road and the site is immediately on the east/right side of the road. Refer to Figure 1 for project location.

2.2 Mitigation Structure and Objectives

The restoration of this portion of Hominy Swamp Creek, located within the Wilson City Recreational Park, was conducted to correct identified system deficiencies including severe bank erosion, channel widening, and the loss of aquatic habitat resulting from stream channelization, the loss of riparian vegetation, and watershed development. The goal of the project was to develop a stable stream channel with reduced bank erosion, efficient sediment transport, enhanced warm water fisheries, and improved overall stream habitat and site aesthetics. Implementation of the project was completed in September 2001.

Table I. Project Structure and Objectives Table									
Project No. 180 (Hominy Swamp Creek)									
Segment Reach ID	Mitigation Type	Approach	Linear Feet/Acreage						
Hominy Swamp Creek	Restoration	Priority 1	2,232 feet						

2.3 Project History and Background

Tables II, III, and IV provide the project history, contact information and background data.

Table II. Project Activity and Reporting History Project No. 180 (Hominy Swamp Creek)								
Activity or Report	Calendar Year of Completion or Planned	Actual Completion						
Activity of Report	Completion	Date						
Restoration Plan		2001						
Mitigation Plan		January 2003						
Construction		September 2001						
As-Built Report		June 2002						
Initial – Year 1		January 2003						
Monitoring								
Year 2 monitoring		December 2003						
Year 3 Monitoring		December 2004						
Year 4 Monitoring	December 2005							
Year 5 Monitoring	December 2006							
Year 5+ Monitoring	TBD							

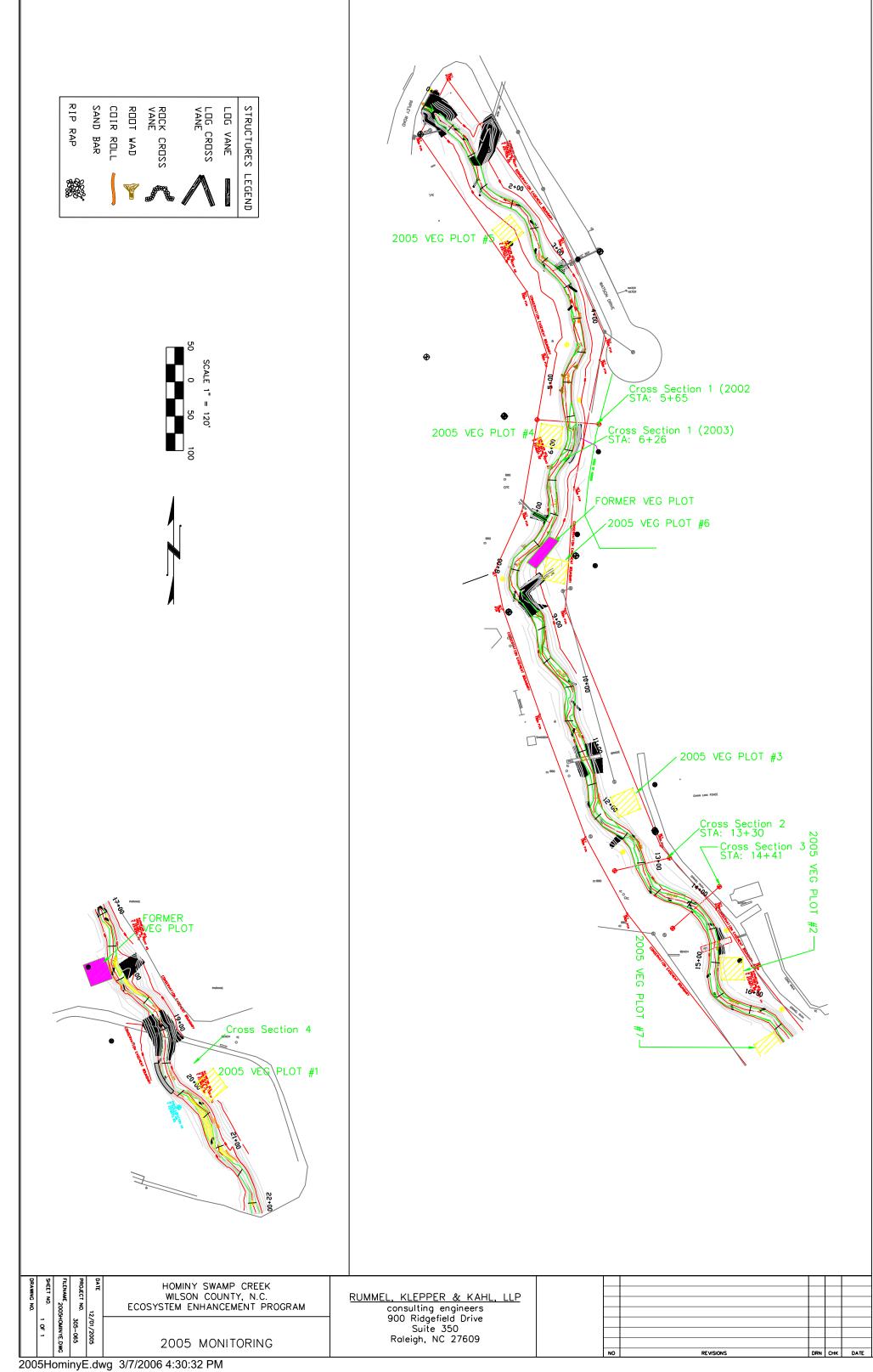

Table III. Project Contact Table						
Project No. 180 (Hominy Swamp Creek)						
Designer	KCI Associates of North Carolina, P.A.					
	Landmark Center II, Suite 200					
	4601 Six Forks Road					
	Raleigh, NC 27609					
Construction Contractor	Not provided					
Planting Contractor	Not provided					
Seeding Contractor	Not provided					
Seed Mix Sources	Not provided					
Nursery Stock Suppliers	Not provided					
Monitoring Performers (Year 4)	Rummel, Klepper & Kahl, LLP					
	900 Ridgefield Drive, Suite 350					
	Raleigh, NC 27609					
Stream Monitoring POC	Howard Woodall, P.E.					
	919-878-9560					
Vegetation Monitoring POC	Howard Woodall, P.E.					
	919-878-9560					

Table IV. Project Background Table						
Project No. 180 (Hominy Swamp Creek)						
Project County	Wilson County, North Carolina					
Drainage Area	5.4 square miles					
Drainage impervious cover estimate (%)	Not provided					
Stream Order	3					
Physiographic Region	Coastal Plain					
Ecoregion	Rolling Coastal Plain					
Rosgen Classification of As-Built	E5					
Cowardin Classification	PSS1Ad					
Dominant soil types	Bibb Loam (Bb)					
Reference site ID	Hominy Swamp Creek					

Table IV. Project Background Table						
Project No. 180 (Ho	Project No. 180 (Hominy Swamp Creek)					
USGS HUC for Project and Reference	3020203020040					
NCDWQ Sub-basin for Project and	03-04-07 Neuse River Basin					
Reference						
NCDWQ Classification for Project and	C; Sw, NSW					
Reference						
Any portion of any project segment 303d	Yes – From its source to Conentnea Creek					
listed?						
Any portion of any project segment						
upstream of a 303d listed segment?						
Reasons for 303d listing or stressor	Impaired biological integrity; Stressors not					
	identified (Potential sources: Urban					
	Runoff/Storm Sewers)					
% of project easement fenced	0					

2.4 Monitoring Plan View

See following page for Monitoring Plan View.

3.0 Project Condition and Monitoring Results

3.1 Vegetation Assessment

Previously, there were six vegetation monitoring plots being monitored for vegetation success. These six are circlular plots with a 15 foot radius and did not meet current EEP monitoring guidelines. To conform with the EEP guidelines, seven new vegetation monitoring plots were installed for 2005. These plots were installed, as 10X10 meter plots on or near existing vegetation monitoring plots to compare baseline data. The results of stem counts yielded no vegetation monitoring plots meeting minimum success criteria. The riparian buffer areas along Hominy Swamp Creek have been mowed and maintained by workers of the adjacent city park. Although some of the planted trees have survived, the majority has been mowed and are the causes of the vegetation monitoring plots not meeting the minimum success criteria.

3.1.1 Soil Data

The Bibb series consists of very deep, poorly drained, moderately permeable soils that formed in stratified loamy and sandy alluvium. These soils are on flood plains of streams in the Coastal Plain. They are commonly flooded and water runs off the surface very slowly. Slopes range from 0 to 2 percent. The vegetation found on Bibb series is usually dominanted by native woodland species consisting of sweetgum, loblolly pine, red maple, water oak, willow oak, green ash, baldcypress, swamp tupelo, and black willow

Table V. Preliminary Soil Data									
Project No. 180 (Hominy Swamp Creek)									
Series	Max Depth (in.)	% Clay on Surface	K	T	OM %				
Bibb Loam (Bb)	80	2 - 18	.2837	5	.5 - 2				

3.1.2 <u>Vegetative Problem Areas</u>

Table VI. Vegetative Problem Areas Project No. 180 (Hominy Swamp Creek)										
Feature/Issue Station #/Range Probable Cause Photo #										
Plot 1	20+25L	Mowing	P1							
Plot 2	15+00L	Mowing	P21							
Plot 3	12+00L	Mowing	P29							
Plot 4	6+00R	Mowing	P51							
Plot 5	2+00R	Mowing	P64							
Plot 6	8+00L	Mowing	P43							
Plot 7	16+50R	Mowing	P14							

3.1.3 Vegetative Problem Area Plan View

Refer to A.1 for Vegetative Problem Area Plan View.

3.1.4 Stem Counts

Once the new plots were installed, the surviving stems were counted. The results of the stem counts yielded no vegetation monitoring plots meeting minimum success criteria. Data for the number and type of species initially planted in each vegetation plot was not available. To determine if the surviving stems met the minimum success criteria, area of the plots were compared to the surviving stem counts. A total of twenty-one stems were counted in all seven plots, this survival rate compared to the total planted area, resulted in 6 trees per acre. A total of 320 trees per acre survival rate is required after monitoring year five.

Table VII. Stem counts for each species arranged by plot Project No. 180 (Hominy Swamp Creek)										
Species]	Plot	s			Year 4 Totals	Initial Totals	Survival %
	1	2	3	4	5	6	7			
Trees						•				
Quercus falcate								0	30	0
Quercus lyrata			1	3				4	22	18
Quercus laurifolia	3		4	1	2	1	2	13	185	7
Quercu nigra								0	61	0
Quercus pagoda								0	94	0
Quercus michauzii								0	9	0
Vibumum nudum								0	100	0
Carya aquatica								0	140	0
Fraxinus		1			1			2	66	3
pennsylvanica Fraxinus caroliniana								0	19	0
Diospyros virginlana								0	24	0
Crateafus marshallii								0	50	0
Sambucus canadensis*								0	200	0
Caphlanthus occidentalis*								0	100	0
Salix nigra*	1							1	100	1

^{*}Denotes that original plantings were live stakes

3.1.5 <u>Vegetation Plot Photos</u>

Photos are located in Appendix A.

3.2 Stream Assessment

3.2.1 Procedural Items

3.2.1.a Morphometric Criteria

 $\underline{\text{Dimension}}$ – Previously established cross-sections were surveyed for comparison to past measurements.

<u>Profile</u> – The longitudinal profile of the restored stream was also surveyed for comparison to the previous monitoring survey. Since the total restored length is less than 3000 feet, the entire reach was surveyed.

3.2.1.b Hydrologic Criteria

Two bankfull events must be recorded during the 5 year monitoring period in order to meet hydrologic criteria.

Table VIII. Verification of Bankfull Events Project No. 180 (Hominy Swamp Creek)

Bankfull events were recorded in 2002 and 2004. No further verification is required.

3.2.1.c Bank Stability Assessment

Table IX. BEHI and Sediment Export Estimates Project No. 180 (Hominy Swamp Creek)

Not required for Year 4 Monitoring

- 3.2.2 <u>Problem Areas Plan View (Stream)</u> Refer to B.1 for Problem Areas Plan View.
- 3.2.3 <u>Problem Areas Table</u> Table X below provides categorical feature issues by station, the suspected cause, and denotes the number of a representative photo of the condition (Appendix B).

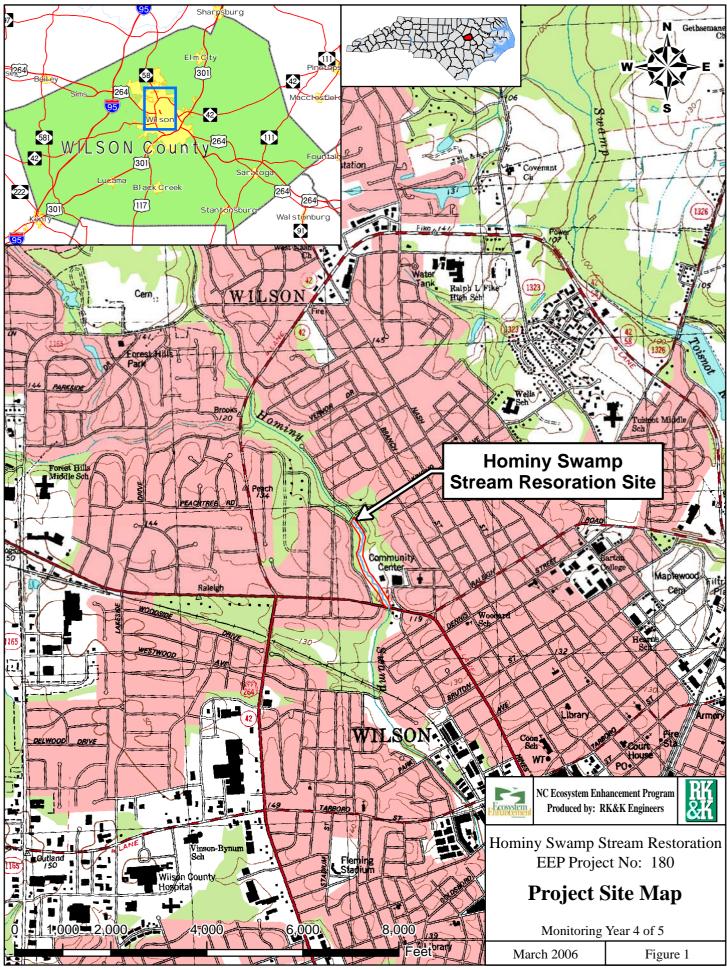
Table X. Stream Problem Areas Project No. 180 (Hominy Swamp Creek)							
Feature/Issue	Station Numbers	Suspected Cause	Photo number				
Aggradation/ Bar	02+25 - 02+40	Upstream bank scour and watershed usage	P65				
Formation	05+50 - 05+70	Upstream bank scour and watershed usage	P52				
	9+90 - 10+00	Upstream bank scour and watershed usage	P36				
	12+00 - 12+15	Upstream bank scour and watershed usage	P31				
	21+20 - 21+45	Upstream bank scour and watershed usage	P3				
Bank Scour	01+10 - 01+25	Lack of Riparian Buffer, overland flow, lack bank vegetation root mass	P67				
	02+55 - 02+55	Lack of Riparian Buffer, overland flow, lack bank vegetation root mass	P63				
	02+60 - 02+70	Lack of Riparian Buffer, overland flow, lack bank vegetation root mass	P63				
	03+15 - 03+30	Lack of Riparian Buffer, overland flow, lack bank vegetation root mass	P59				
	04+10 - 04+35	Lack of Riparian Buffer, overland flow, lack bank vegetation root mass	P57				
	04+10 - 04+25	Lack of Riparian Buffer, overland flow, lack bank vegetation root mass	P55				
	06+20 - 06+45	Lack of Riparian Buffer, overland flow, lack bank vegetation root mass	P48,P49				
	15+20 - 15+40	Lack of Riparian Buffer, overland flow, lack bank vegetation root mass	P22, P23				
	15+60 - 15+80	Lack of Riparian Buffer, overland flow, lack bank vegetation root mass	P19, P20				

- 3.2.4 <u>Numbered issue photos section</u> Refer to B.2 for photos.
- 3.2.5 <u>Fixed station photos</u> Refer to B.3 for photos.

3.2.6 Stability Assessment Table

Table XI. Categorical Stream Feature Visual Stability Assessment Project No. 180 (Hominy Swamp Creek)										
Feature	Initial	MY-01	MY-02	MY-03	MY-04	MY-05				
A. Riffles	100%	NA	NA	NA	33%					
B. Pools	NA	NA	NA	NA	NA					
C. Thalweg	100%	NA	NA	NA	60%					
D. Meanders	100%	NA	NA	NA	67%					
E. Bed	100%	NA	NA	NA	96%					
General										
F. Vanes/J	100%	NA	NA	NA	90%					
Hooks etc.										
G. Wads and	100%	NA	NA	NA	93%					
Boulders										

3.2.7 <u>Quantitative Measures Tables</u> – Refer to the following pages for Table XII (Baseline Morphology and Hydraulic Summary) and Table XIII (Morphology and Hydraulic Monitoring Summary).


Table XII. Baseline Morphology and Hydraulic Summary Project No. 180 (Hominy Swamp Creek)																		
Parameter	USG	S Gauge	e Data		gional C Interva	urve		Pre-Exis	sting		ject Ref Strean		Design		As-Built			
Dimension	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med
BF Width (ft)							n/a	n/a	25.5	n/a	n/a	11.9	n/a	n/a	20.2	21.7	24.8	23.3
Floodprone Width (ft)							n/a	n/a	>100	n/a	n/a	45	n/a	n/a	>100	n/a	n/a	>300
BF Cross Sectional Area (ft²)							n/a	n/a	70	n/a	n/a	19.2	n/a	n/a	55	53.4	62.3	57.9
BF Mean Depth (ft)							n/a	n/a	2.74	n/a	n/a	1.61	n/a	n/a	2.73	2.46	2.51	2.49
BF Max Depth (ft)							n/a	n/a	4.68	n/a	n/a	2.11	n/a	n/a	4.3	3.6	3.8	3.7
Width/Depth Ratio							n/a	n/a	9.3	n/a	n/a	7.4	n/a	n/a	7.4	8.8	9.9	9.4
Entrenchment Ratio							n/a	n/a	>4	n/a	n/a	>2.2	n/a	n/a	>5	12.1	13.9	13.0
Wetted Perimeter (ft)																		
Hydraulic radius (ft)																		
Pattern																		
Channel Beltwidth (ft)							n/a	n/a	92	n/a	n/a	92	n/a	n/a	85	n/a	n/a	n/a
Radius of Curvature (ft)							43	135	n/a	27.35	36.9	n/a	46.5	62.6	n/a	n/a	n/a	n/a
Meander Wavelength (ft)							114	170	n/a	107	150	n/a	182	255	n/a	n/a	n/a	n/a
Meander Width Ratio							n/a	n/a	3.6	n/a	n/a	7.7	n/a	n/a	4.2	n/a	n/a	n/a
Profile					1													
Riffle length (ft)							n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
Riffle slope (ft/ft)							n/a	n/a	0.00016	n/a	n/a	0.0018	n/a	n/a	0.0015	n/a	n/a	n/a
Pool length (ft)							26	38	n/a	20	29	n/a	35	49	n/a	n/a	n/a	n/a
Pool spacing (ft)							n/a	n/a	167	n/a	n/a	69.56	91.0	127.5	n/a	n/a	n/a	n/a
Substrate			•		•						'	'		•	'			
d50 (mm)							n/a	n/a	n/a	n/a	n/a	VFsand	n/a	n/a	0.25	n/a	n/a	0.26
d84 (mm)							n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
Additional Reach																		
Parameters																		
Valley Length (ft)								n/a			n/a			1,850			1,850	
Channel Length (ft)								n/a			n/a			2,232			2,232	
Sinuosity								1.1			1.41			1.2			n/a	
Water Surface Slope (ft/ft)								0.001	5		0.0013	5		0.0014	1		n/a	
BF slope (ft/ft)				n/a			n/a		n/a			n/a						
Rosgen Classification				E5 (Modified)		E5		E5		n/a								
Number of Bankfull Events																n/a		
Extent of BF floodplain (acres)								n/a			n/a			n/a			n/a	

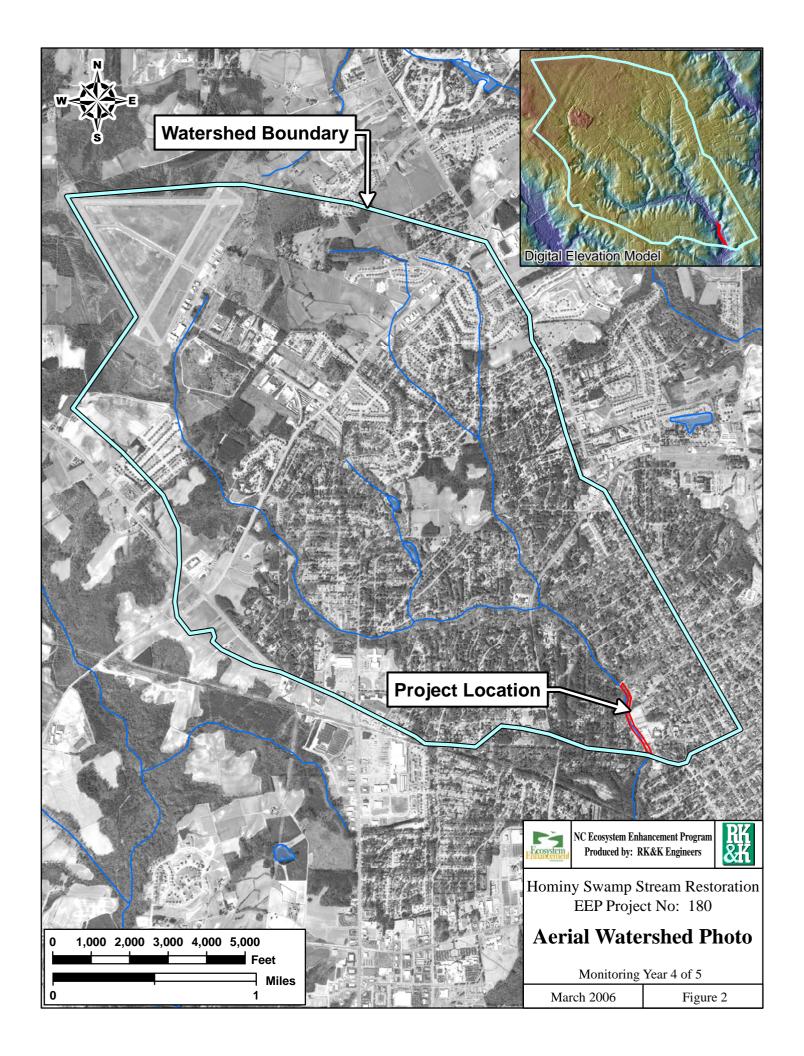
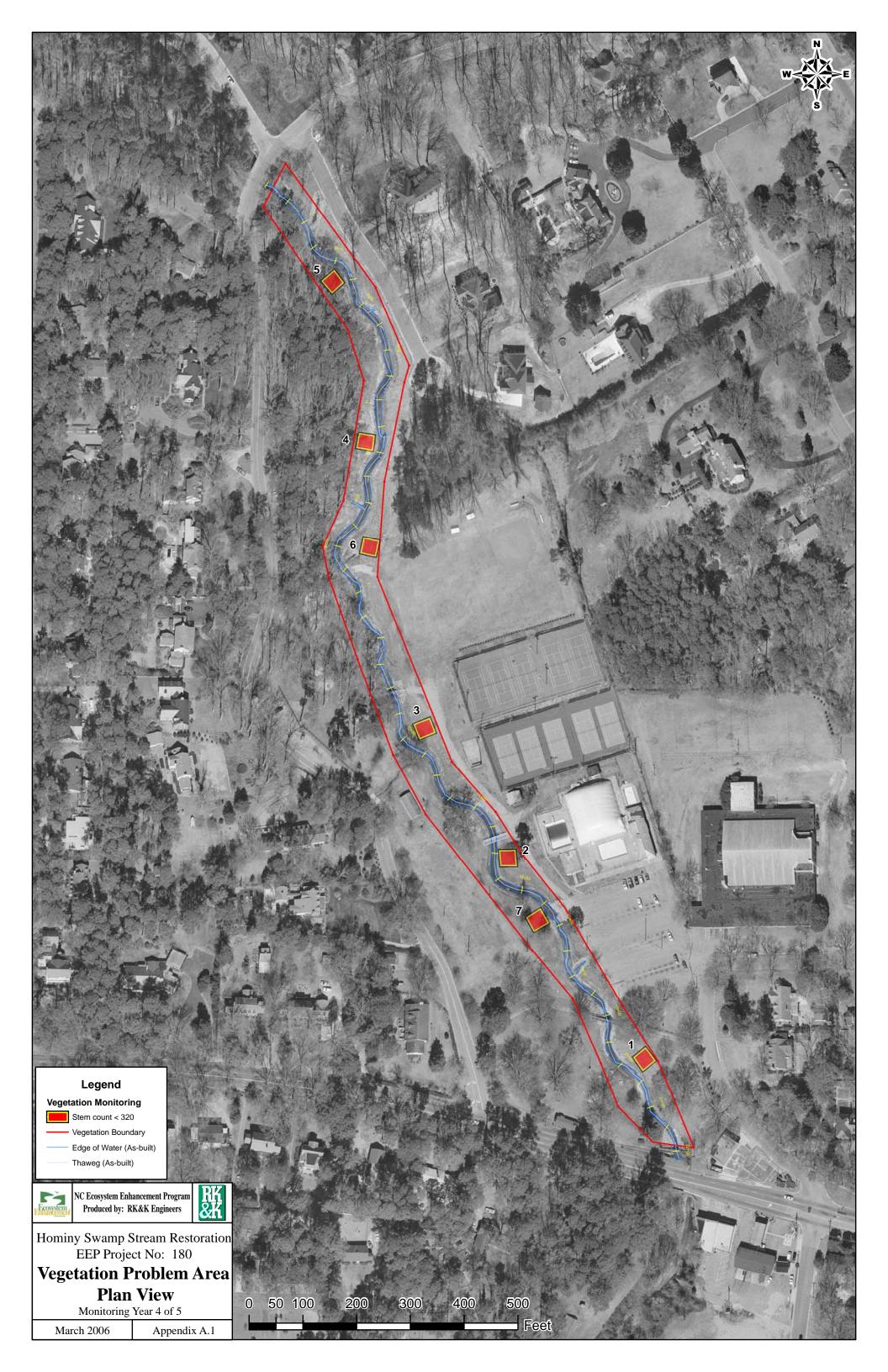

Note: "n/a" denotes that historical documents necessary to provide this data were unavailable at the time of this report submission, or a value is not applicable.

Table XIII. Morphology and Hydraulic Monitoring Summary																
Project No. 180 (Hominy Swamp Creek) Cross Section 1 Cross Section 2 Cross Section 3 Cross Section 4																
Parameter			section iffle	1	Cross Section 2 Cross Section 3 Riffle Pool							Cross Section 4 Pool				
Dimension	MY1	MY	MY	MY4	MY1	MY2	MY3	MY4	MY1	MY2	MY3	MY4	MY1	MY2	MY3	MY4
Dimension	NIXI	2	3	N1 Y 4	NIXI	NI Y Z	NIIS	IVI Y 4	NIXI	NI Y Z	MIIS	N1 Y 4	NIII	IVI Y Z	MIIS	N1 1 4
BF Width (ft)	25.0	24.6	16.8	43.7	21.6	18.3	19.0	22.1	31.8	33.1	27.7	24.0	23.5	26.8	24.9	25.4
Floodprone Width (ft)	>300	24.0	10.0	73.7	>300	10.5	17.0	60.7	n/a	33.1	21.1	24.0	n/a	20.0	24.7	25.4
BF Cross Sectional Area (ft²)	62.3	87.2	52.7	102.9	53.1	53.9	59.8	2.7	76.3	64.9	54.3	61.8	88.3	107.5	113.8	119.5
BF Mean Depth (ft)	2.5	3.5	3.1	2.4	2.5	3.0	3.2	4.9	2.4	2.0	2.0	2.6	3.8	4.0	4.6	4.7
BF Max Depth (ft)	3.6	6.8	4.9	4.6	3.8	4.2	4.8	8.2	6.0	5.5	4.9	4.8	6.0	6.8	7.2	7.3
Width/Depth Ratio	9.9			18	8.79				n/a				n/a			
Entrenchment Ratio	12.08				13.85											
Substrate																
d50 (mm)	0.54	0.29	0.58	1.55	0.20	0.17	0.26	1.64	0.22	0.26	1.88	n/a	0.17	0.22	0.27	n/a
d84 (mm)	2.00	0.58	1.88	1.60	0.63	0.49	0.67	1.8	13.65	5.88	17.73	n/a	3.74	0.62	0.75	n/a
Parameter	MY-01 (2002))	MY-02 (2003)			MY-03 (2004)				MY-04 (2005)				
Pattern	Min	M	ax	Med	Min	N	Iax	Med	Min	N	Iax	Med	Min Max		Max	Med
Channel Beltwidth					32	(69	46	32	(59	46	32		69	46
(ft)																
Radius of Curvature (ft)					33		76	56	33	,	76	56	33		76	56
Meander Wavelength					115	2	27	155	115	2	27	155	115	5	227	155
(ft)																
Meander Width ratio					1.5	3	3.2	2.1	1.8	3	3.9	2.6	1.4		3.1	2.1
Profile													•	•		
Riffle length (ft)					15		53	23	16		41	28				
Riffle slope (ft/ft)																
Pool length (ft)					30		73	52	32		15	53				
Pool spacing (ft)					64	1	.78	107	45	1	65	108				

Note: "n/a" denotes that historical documents necessary to provide this data were unavailable at the time of this report submission, or a value is not applicable.



Hominy Swamp Vegetation Problem Area Photos

P1. Vegetation Monitoring Plot 1

P21. Vegetation Monitoring Plot 2.

P29. Vegetation Monitoring Plot 3.

P51. Vegetation Monitoring Plot 4.

P64. Vegetation Monitoring Plot 5.

P43. Vegetation Monitoring Plot 6.

P14. Vegetation Monitoring Plot 7.

A.3	VEGETATION MONITORING PLOT PHOTOS	

Hominy Swamp Vegetation Monitoring Plot Photos

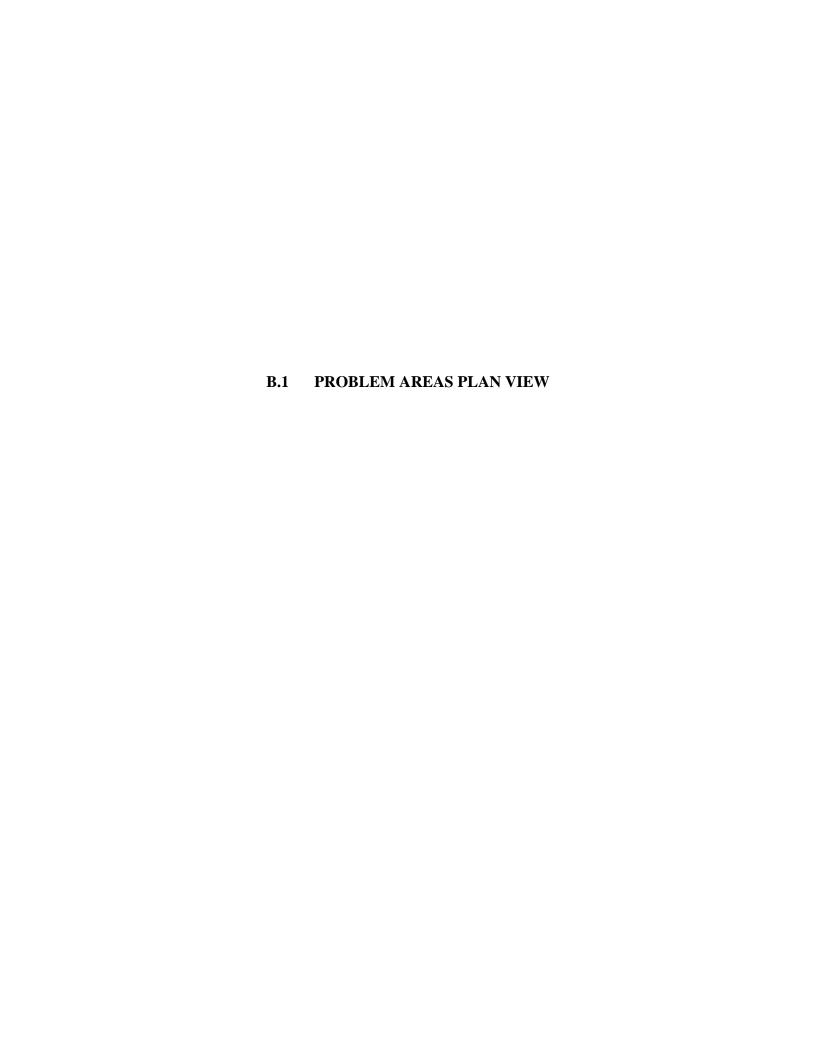
P1. Vegetation Monitoring Plot 1

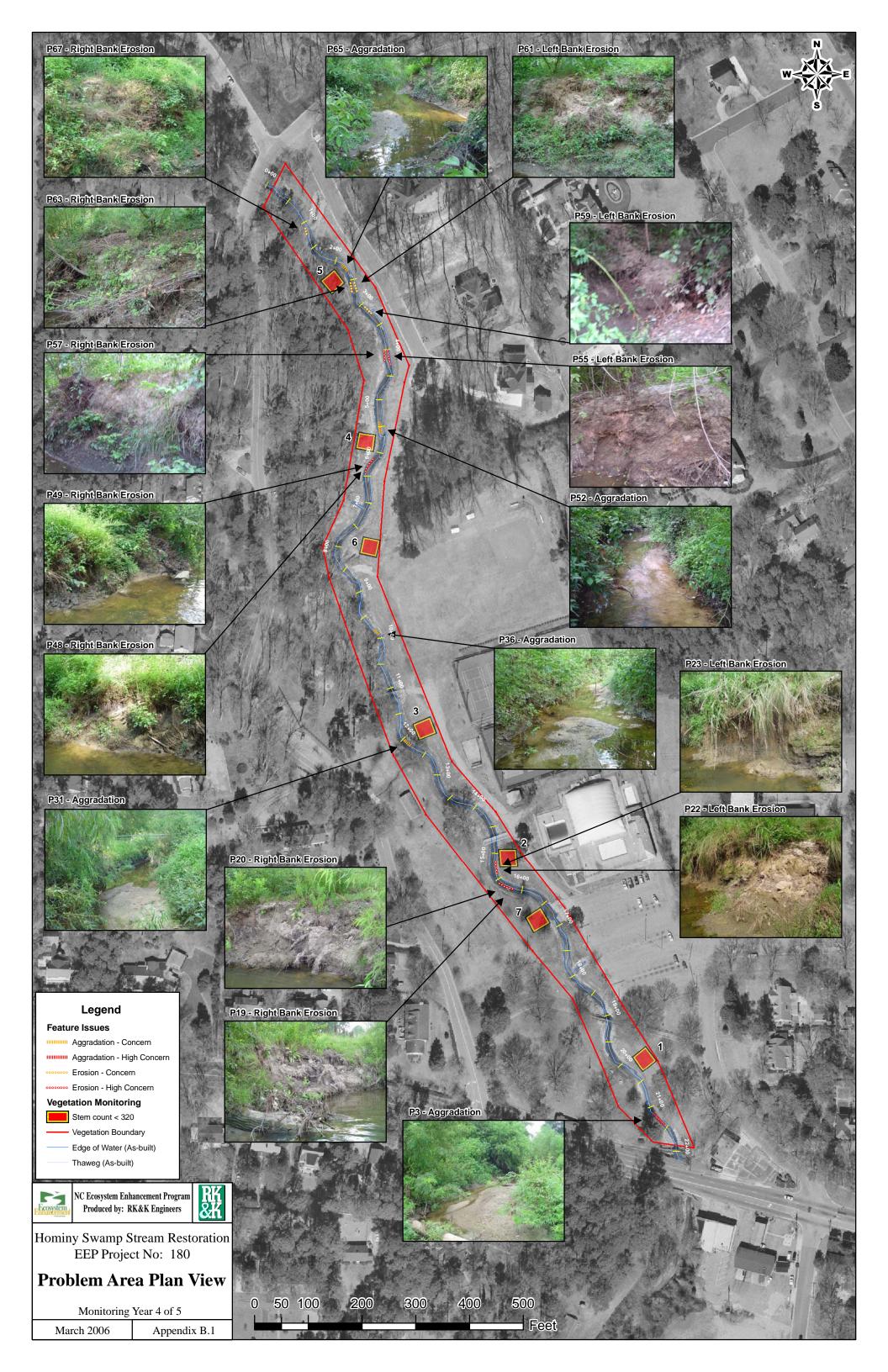
P21. Vegetation Monitoring Plot 2.

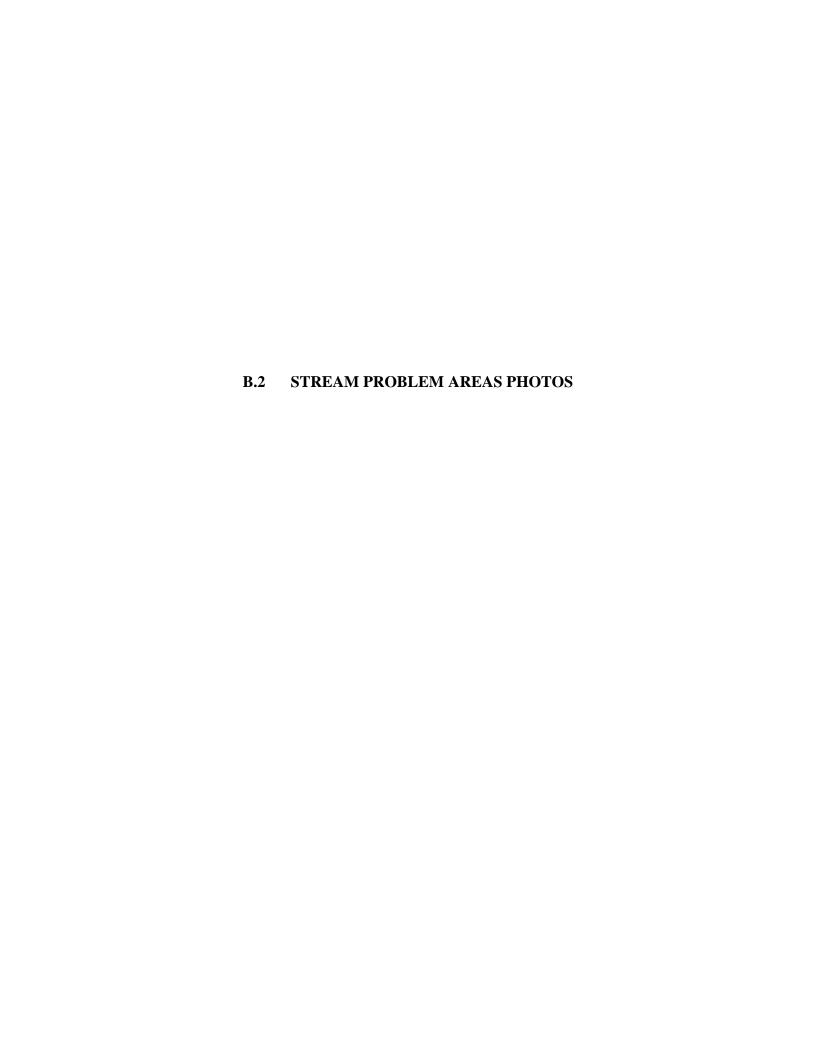
P29. Vegetation Monitoring Plot 3.

P51. Vegetation Monitoring Plot 4.

P64. Vegetation Monitoring Plot 5.


P43. Vegetation Monitoring Plot 6.




P14. Vegetation Monitoring Plot 7.

Hominy Swamp Stream Problem Area Photos

P3. Station 21+30. Aggregation.

P31. Station 12+15. Aggregation.

P36. Station 9+90. Aggregation.

P52. Station 5+60. Aggregation.

P65. Station 2+20. Aggregation.

P19. Station 15+80. Erosion on right bank looking upstream.

P20. Station 15+70. Erosion on left bank.

P22. Station 15+30. Erosion on left bank

P23. Station 15+25. Erosion on left bank.

P48. Station 6+25. Erosion on right bank.

P49. Station 6+25. Erosion on right bank.

P55. Station 4+15. Erosion on left bank.

P57. Station 4+10. Erosion on right bank.

P61. Station 2+65. Erosion on left bank.

P63. Station 2+60. Erosion on right bank.

P67. Station 1+20. Erosion on right bank.

Hominy Swamp Cross-section Photos

P60. Station 6+30. Cross-section 1.

P27. Station 14+10. Cross-section 3.

P28. Station 13+40. Cross-section 2.

P6. Station 19+90. Cross-section 4,

B.4	CROSS SECTION PLOT	TS AND RAW DAT	TABLES	

Project | Hominy Swamp Creek

Cross St#1
Feature Riffle
Date 6/23/05
Crew Cook, Stafford

Cross-Section #1 location was moved in 2003

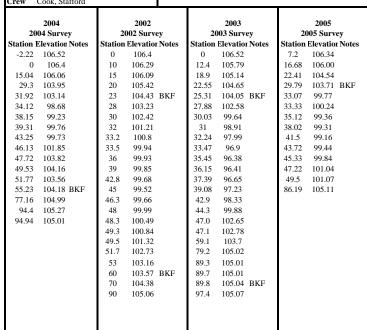
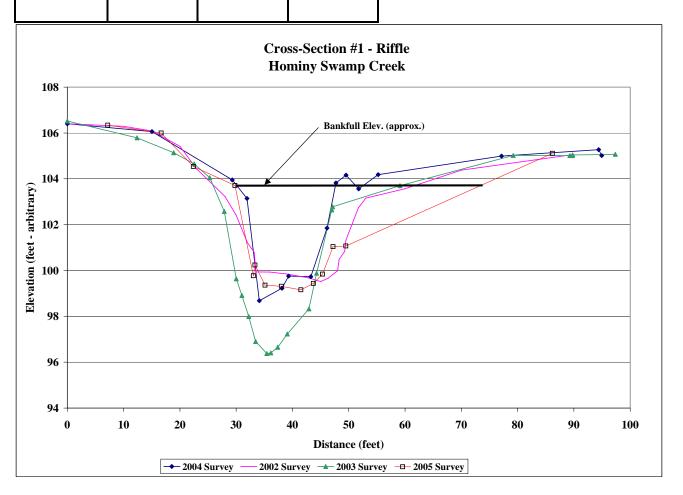
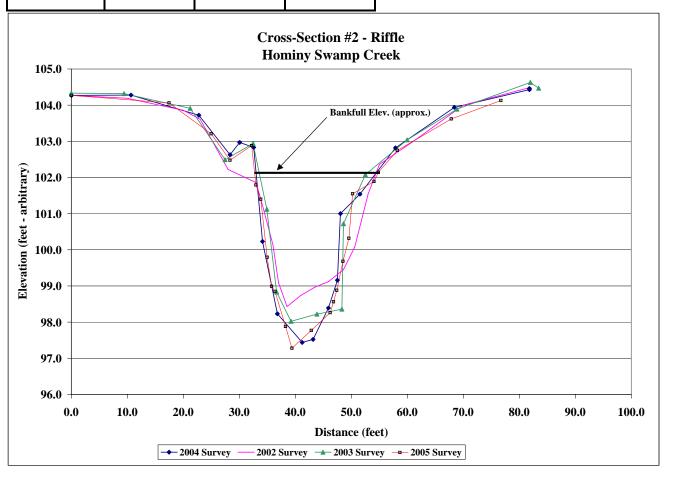



Photo of Cross-Section #1 - Looking Downstream

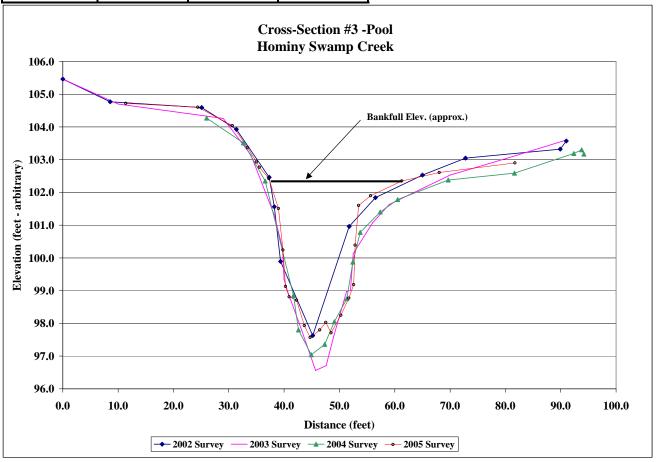
	2002	2003	2004	2005
Area	62.3	87.2	52.7	102.9
Width	25.0	24.6	16.8	43.7
Mean Depth	2.5	3.5	3.1	2.4
Max Depth	3.6	6.8	4.9	4.6


Project | Hominy Swamp Creek Cross St#2 Feature Riffle Date 6/23/05 Crew Cook, Stafford

2004		2002		2003			2005				
	004 Surve			002 Surv			2003 Survey Station Elevatior Notes			2005 Survey Station Elevatior Notes	
	Elevation	n Notes	Station		r Notes			r Notes			Notes
0.0	104.3		0.0	104.3		0.0	104.3		0.0	104.27	
10.7	104.3		10.0	104.2		9.4	104.3		17.5	104.06	
22.8	103.7	DIZE	20.0	103.9		21.2	103.9	DIZE	25.0	103.21	
28.3	102.6	BKF	23.0	103.6	BKF	27.5	102.5	BKF	28.3	102.48	
30.1	103.0		28.0	102.2	BKF	32.5 34.9	102.9		32.2	102.88 101.79	
32.6	102.8		33.0	101.9			101.1		33.0		
34.2	100.2		34.0	101.3		36.7	98.8		33.8	101.40	
36.8	98.2		36.0	100.1		39.2	98.0		34.98	99.79	
41.2 43.2	97.4 97.5		37.0 38.5	99.1 98.4		43.9 48.3	98.2 98.4		35.8 36.4	98.99 98.85	
45.9	97.3		41.0	98.7		48.6	100.7		38.3	97.88	
47.5	99.2		43.5	99.0		52.5	100.7		39.4	97.88	
48.1	101.0		45.9	99.0		60.0	102.1		42.9	97.28	
51.5	101.5		48.6	99.1		68.9	103.0		46.2	98.26	
57.9	101.3		50.6	100.1		82.0	103.9		46.8	98.56	
68.4	102.8		53.0	100.1		83.5	104.5		47.4	98.88	
81.8	104.4		55.0	102.4	BKE	05.5	104.5		48.5	99.68	
81.8	104.5		61.0	103.0	DIXI				49.6	100.32	
01.0	104.5		70.0	104.0					50.2	100.52	
			82.0	104.5					54.1	101.89	
			02.0	104.5					54.8	102.14	BKE
									58.2	102.75	DIXI
									67.9	103.62	
									76.7	103.02	
									, 5.7	104.15	
			I			I					

Photo of Cross-Section #2 - Looking Upstream

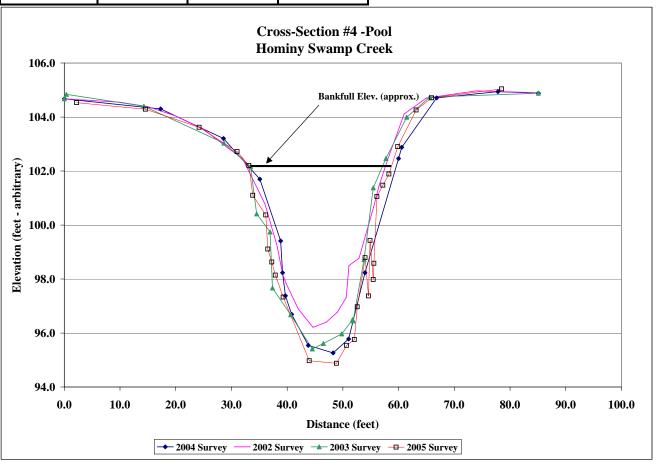
	2002	2003	2004	2005
Area	53.1	53.9	59.8	60.7
Width	21.6	18.3	19.0	22.1
Mean Depth	2.5	3.0	3.2	2.7
Max Depth	3.8	4.2	4.8	4.9


Project | Hominy Swamp Creek Cross St #3 Feature Pool Date 6/23/05 Crew Cook, Stafford

Crew	COOK, St	amoru									
2.0	2002 002 Surv	ev	200	2003 03 Surv	ev	2004 2004 Survey		2005 2005 Survey		ev	
Station	Elv.	Notes	Station		Notes	Station		Notes	Station		Notes
0.0	105.5		0.0	105.5		26.0	104.3		11.4	104.72	
8.6	104.8		10.0	104.7		32.7	103.5		24.4	104.6	
25.1	104.6		29.0	104.3		36.6	102.4		30.6	104.04	
31.4	103.9		34.0	103.1		41.7	98.9		33.4	103.37	
37.3	102.5		38.2	101.3		42.6	97.8		35.0	102.93	
38.2	101.6		39.7	100.3		44.9	97.0		35.5	102.77	
39.4	99.9		40.0	99.3		47.3	97.4		37.2	102.42	
45.2	97.6		40.6	99.0		49.1	98.1		38.97	101.51	
51.8	101.0		43.0	97.9		51.3	98.8		39.8	100.2	
56.5	101.8		45.7	96.6		52.4	99.9		40.3	99.1	
65.0	102.5	BKF	47.6	96.7		53.8	100.8		40.9	98.8	
72.8	103.1		49.0	97.6		57.4	101.4		42.3	98.7	
89.9	103.3		51.3	99.0		60.5	101.8		43.7	97.9	
91.0	103.6		52.0	99.0		69.7	102.4		44.7	97.6	
			52.5	100.1		81.6	102.6	BKF	46.4	97.8	
			56.0	101.1		92.4	103.2		47.5	98.0	
			59.0	101.6		93.8	103.3		48.5	97.7	
			70.0	102.5	BKF	94.2	103.2		50.3	98.3	
			80.0	103.0					51.7	98.8	
			91.0	103.6					52.6	99.2	
									52.8	100.4	
									53.5	101.6	
									55.6	101.9	
									61.3	102.4	BKF
									68.1	102.6	
									81.7	102.9	

Photo of Cross-Section #3 - Looking Downstream

	2002	2003	2004	2005
Area	76.3	64.9	54.3	61.8
Width	31.8	33.1	27.7	24.0
Mean Depth	2.4	2.0	2.0	2.6
Max Depth	6.0	5.5	4.9	4.8


Project | Hominy Swamp Creek Cross St #4 Feature Pool 6/23/05 Cook, Stafford

	2004			2002			2003			2005	
2004 Survey		20	2002 Survey		2003 Survey		20	2005 Survey			
Station	Elevation	Notes	Station Elevation Notes		Station Elevatior Notes		Station Elevatior Notes				
0.0	104.7		0.0	104.7		0.0	104.7		2.2	104.53	
17.3	104.3		10.0	104.6		0.4	104.8		14.6	104.29	
28.6	103.2		15.0	104.4		14.3	104.4		24.2	103.62	
35.1	101.7		20.0	104.0		28.7	103.0		31.01	102.72	
38.8	99.4		25.0	103.5		33.4	102.2		33.1	102.2	BKF
39.2	98.2		30.0	102.8		34.5	100.4		33.82	101.1	
39.7	97.4		32.0	102.5	BKF	36.9	99.7		36.17	100.37	
40.8	96.7		36.0	100.8		37.4	97.7		36.5	99.11	
43.8	95.5		38.2	99.2		40.6	96.7		37.3	98.6	
48.3	95.3		39.2	98.2		44.5	95.4		37.9	98.1	
51.0	95.8		39.8	97.8		46.5	95.6		39.3	97.3	
54.0	98.2		42.0	96.9		49.8	96.0		44.0	95.0	
60.0	102.5	BKF	44.6	96.2		51.7	96.5		48.8	94.9	
60.6	102.9		47.0	96.4		51.9	96.5		50.7	95.5	
66.8	104.7		49.0	96.8		53.8	98.7		52.1	95.8	
77.8	104.9		50.6	97.3		55.5	101.4		52.6	97.0	
85.1	104.9		51.1	98.5		57.7	102.5	BKF	54.0	98.8	
			52.9	98.8		61.5	104.0		54.6	97.4	
			55.5	100.7		65.6	104.7		54.9	99.4	
			56.5	101.5		85.1	104.9		55.5	98.0	
			58.0	102.4	BKF				55.6	98.6	
			61.0	104.1					56.1	101.1	
			65.0	104.7					57.2	101.5	
			74.0	105.0					58.3	101.9	
			85.0	104.9					59.8	102.9	
I									63.1	104.3	
									65.9	104.7	
I									78.5	105.0	
I											

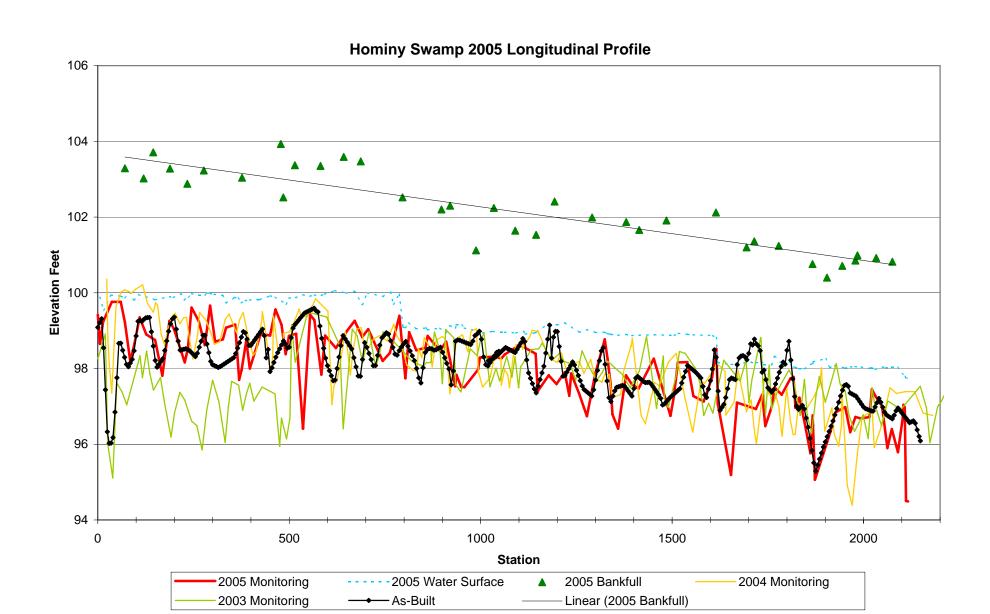


Photo of Cross-Section #4 - Looking Upstream

	2002	2003	2004	2005
Area	88.3	107.5	113.8	119.5
Width	23.5	26.8	24.9	25.4
Mean Depth	3.8	4.0	4.6	4.7
Max Depth	6.0	6.8	7.2	7.3

B.5	LONGITUDINAL PLOTS AND RAW DATA TABLES	

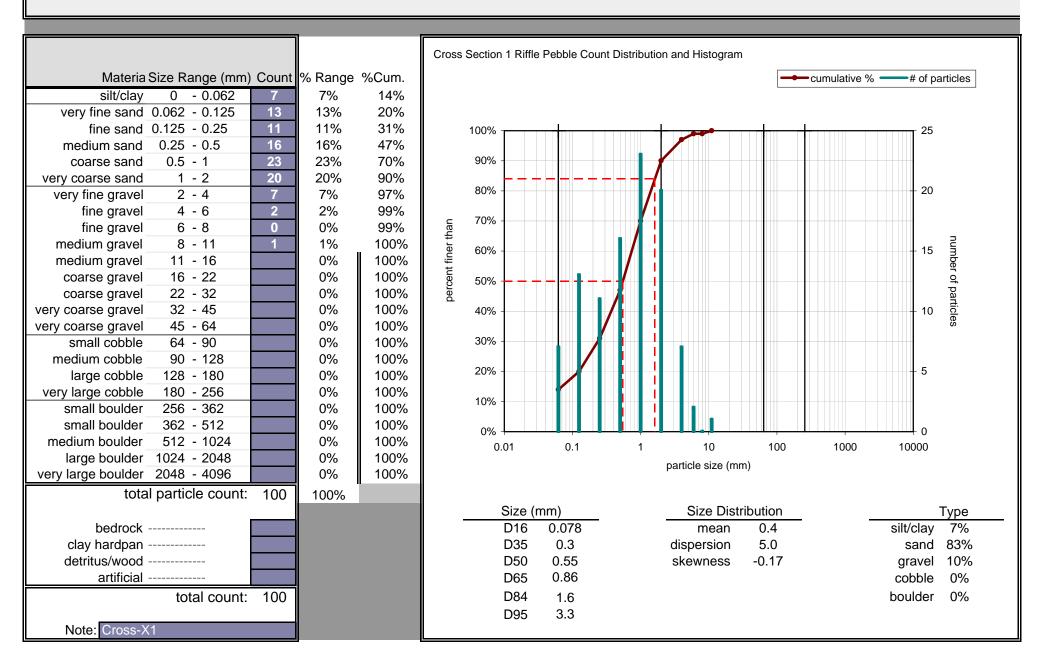
Project Name: Hominy Swamp Task: Longitudinal Profile

Date: June 22, 2005

		2005 Surve	ey		
TWG	TWG	WS	WS	BKF	BKF
Station	Elevation	Station	Elevation	Station	Elevation
0	99.42	5.48	99.88	70.9	103.29
5.71	98.65	15.32	99.54	119.66	103.02
13.78	99.23	34.78	99.94	144.76	103.71
36.66	99.76	61.17	99.91	188.5	103.28
60.02	99.76	69.91	99.87	233.75	102.88
70.85	99.22	82.44	100.01	276.81	103.23
84.83	98.19	94.62	99.81	376.73	103.04
95.8	98.65	106.8	99.95	478.12	103.93
109.21	99.35	125.89	99.9	484.63	102.52
126.68	98.9	149.9	99.81	514.9	103.37
149.72	98.75	187.69	99.9	581.64	103.35
168.72	97.81	197.64	99.87	642.28	103.59
187.13	99.26	216.86	99.98	686.79	103.47
199.23	99.04	226.27	99.81	795.93	102.52
218.64	98.43	236.01	99.89	897.71	102.2
227.16	98.16	245.08	99.98	920.11	102.3
235.54	98.54	263.6	99.94	987.8	101.12
244.83	99.61	279.51	99.94	1034.47	102.24
263.6	99.25	285.5	100	1090.38	101.64
279.32	98.62	293.26	99.98	1144.85	101.53
285.6	99.07	303.8	99.96	1193.01	102.41
293.26	99.66	326.68	99.93	1291.14	101.99
306.5	98.71	335.55	99.73	1379.99	101.87
326.52	98.77	357.17	99.88	1414.07	101.66
335.25	99.08	366.3	99.86	1485.18	101.91
358.68	99.16	374.83	99.73	1614.48	102.12
369.19	97.7	385.35	99.79	1694.66	101.2
375.59	97.97	396.48	99.81	1714.61	101.36
387.85	98.74	423.97	99.82	1778.6	101.24
397.08	98	450.27	99.92	1866.63	100.76
425.52	98.92	463.53	99.89	1904.57	100.4
449.78	98.87	491.94	99.7	1944.39	100.71
464.06	99.56	499.76	99.86	1978.66	100.85
479.8	99.16	516.94	99.87	1984.16	100.99
490.63	98.38	535.86	99.95	2033.03	100.92
499.38	98.86	554.15	99.91	2075.18	100.82
517.91	98.92	565.71	99.94		

		2005 Surve	ey		
TWG	TWG	WS	WS	BKF	BKF
Station	Elevation	Station	Elevation	Station	Elevation
535.86	96.41	584.07	99.93		
554.53	99.42	592.33	99.96		
565.66	99.28	619.07	100.06		
584.07	97.84	648.92	99.99		
593.86	98.87	670.26	100.04		
621.74	98.54	691.06	99.69		
650.76	98.99	704.44	100		
670.86	99.26	745	99.9		
690.66	98.83	765.16	100.02		
706.29	99.04	771.9	99.7		
744.12	98.2	787.46	99.96		
762.96	98.41	797.32	99.09		
770.26	98.7	802.69	99.08		
787.79	99.39	812.45	99.21		
797.57	98.35	830.78	99.05		
803.32	97.74	856.87	99.07		
813.29	98.96	861.44	99.02		
831.8	98.48	893.39	99.07		
856.02	98.55	909.73	98.95		
861.53	98.86	919.75	99.13		
893.57	98.47	933.87	99.07		
910.03	98.71	936.55	99.15		
920.11	98.22	950.25	99.15		
933.38	97.53	957.4	99.07		
936.71	97.83	993.17	99		
949.16	97.51	998.8	99.01		
957.55	97.51	1005.39	98.94		
993.17	97.97	1031.73	98.98		
997.84	98.29	1053.24	98.96		
1030.89	98.31	1062.7	98.96		
1054.51	98.27	1092	98.94		
1062.7	98.37	1112.27	98.98		
1093.84	98.57	1116.79	98.91		
1112.73	98.76	1142.33	98.94		
1116.96	98.54	1146.79	98.97		
1143.49	98.39	1177.24	99.19		
1149.01	97.4	1199.55	99.15		
1177.64	97.82	1220.69	99.21		
1198.08	97.59	1257.96	98.95		
1219.51	97.9	1276.78	99.03		
1231.62	97.28	1299.7	98.95		

		2005 Surve	ey		
TWG	TWG	WS	WS	BKF	BKF
Station	Elevation	Station	Elevation	Station	Elevation
1236.25	97.87	1324.59	98.96		
1256.98	97.34	1331.28	98.92		
1277.45	96.74	1338.19	98.91		
1299.01	97.85	1341.46	98.9		
1324.09	98.77	1358.5	98.88		
1331.72	98.24	1380.37	98.9		
1339.48	97.57	1395.03	98.87		
1344.08	96.79	1413.67	98.88		
1358.94	96.41	1454.02	98.89		
1379.73	97.82	1493.91	98.88		
1394.96	97.58	1505.38	98.87		
1412.49	97.47	1516.37	98.93		
1452.08	98.26	1540.81	98.9		
1495.67	96.75	1555.07	98.89		
1504.42	97.25	1606.05	98.87		
1515.13	98.16	1615.87	98.82		
1539.77	98.17	1618.54	98.14		
1555.55	97.27	1620.19	98.16		
1582.6	97.13	1654.69	98.1		
1604.57	97.77	1667.66	98.14		
1615.59	98.52	1706.41	98.16		
1618.07	97.67	1719.54	98.15		
1619.36	97.07	1734.88	98.18		
1653.86	95.19	1739.71	98.1		
1669.52	97.1	1759.77	98.1		
1707.64	96.97	1767.64	98.32		
1718.82		1786.38			
1735.26	97.31	1810.02	98.18		
1743.39		1818.08			
1760.66	97	1822.86	98.03		
1767.68	97.5	1832.43	97.99		
1786.38		1846.57	97.99		
1809.27					
1816.97					
1822.13					
1832.43					
1846.33					
1861.36					
1867.22					
1868.01					
1872.94	95.06	1978.07	98.05		


		2005 Survey				
TWG	TWG	WS	WS	BKF	BKF	
Station	Elevation	Station	Elevation	Station	Elevation	
1965.36	96.32	2030.68	97.97			
1978.66	96.72	2049.31	98.04			
1993.52	96.68	2058.6	98.02			
2015.61	96.72	2074.46	98.03			
2021.68	97.45	2088.94	98.03			
2031.18	97.27	2107.77	97.79			
2048.22	97	2110.52	97.76			
2062.32	95.9	2114.93	97.74			
2073.77	96.4					
2089.79	95.79					
2102.12	96.68					
2104.24	97.04					
2107.59	96.97					
2110.94	94.5					
2116.35	94.49					

B.6	PEBBLE COUNT PLOTS AND RAW DATA TABLES

Year 4 Monitoring, Pebble Count Cross Section 1 Riffle

Hominy Swamp Creek Stream Restoration Project

Project No: D050515 12/1/2005 Pebble Count Data Sheet Cross Section 1 Station 15+60

Year 4 Monitoring, Pebble Count Cross Section 2 Riffle

Hominy Swamp Creek Stream Restoration Project

Project No: D050515

12/1/2005

Pebble Count Data Sheet

of particles

30

25

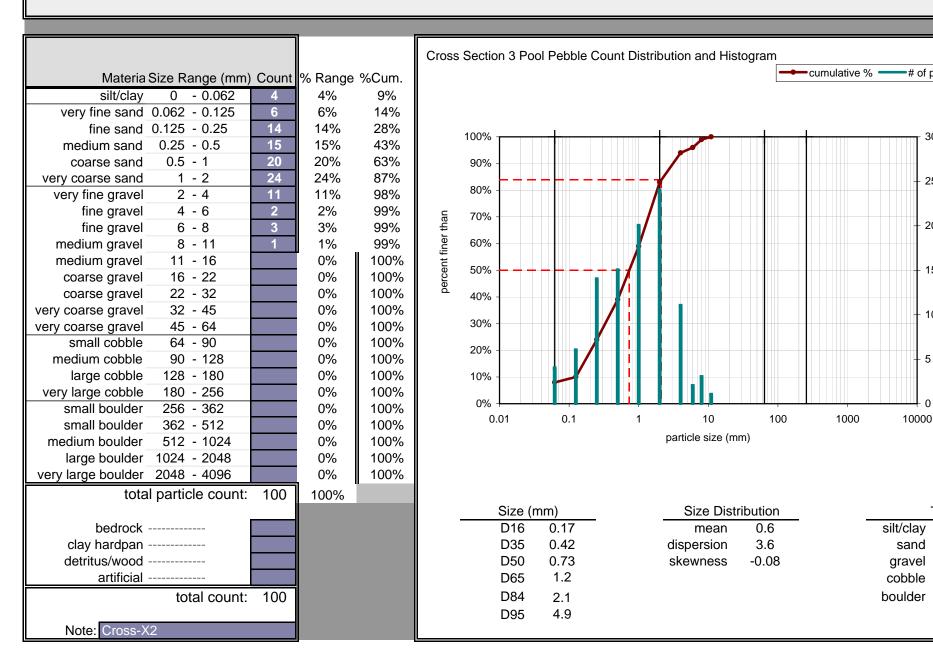
20

15

10

5

Type 4%

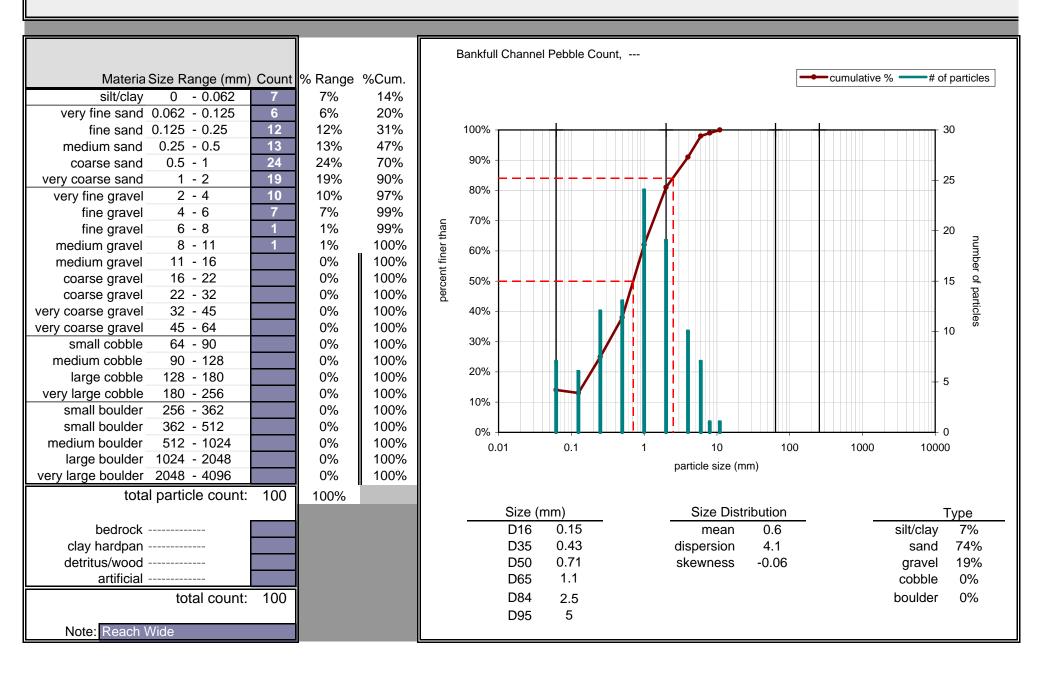

79%

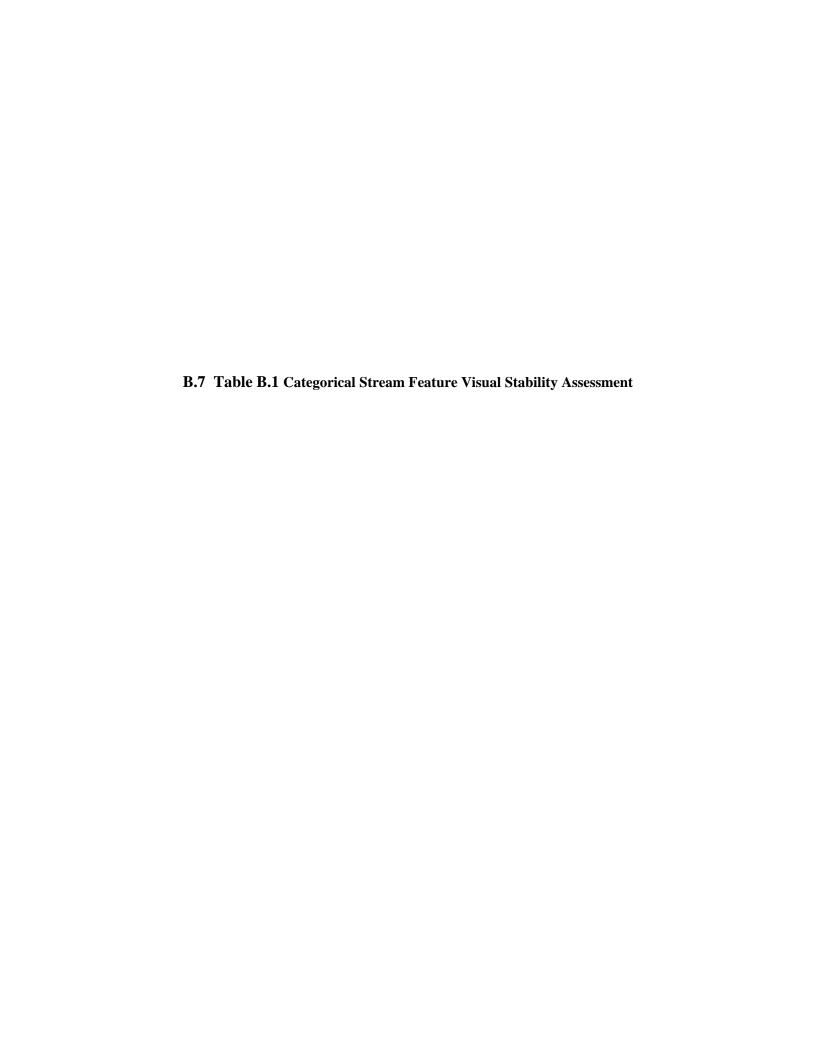
17%

0%

0%

Cross Section 3 Station 14+41


Year 4 Monitoring, Pebble Count Reach Wide


Hominy Swamp Creek Stream Restoration Project

Project No: D050515

12/1/2005

Pebble Count Data Sheet Reach Wide Pebble Count

Table B1. Visual Morphological Stability Assessment											
Project No. 180 (Hominy Swamp Creek)											
Feature	Metric (per As-built and reference	(# Stable)	Total	Total	%	Feature					
Category	baselines)	Number	number	Number	Perform	Perform.					
		Performing	per	/feet in	in Stable	Mean or					
		as	As-	unstable	Condition	Total					
		Intended	built	state							
A. Riffles	1. Present?	2	6	NA	33						
	2. Armor stable(e.g. no displacement)?	2	6	NA	33						
	3. Facet grade appears stable?	2	6	NA	33						
	4. Minimal evidence of	2	6	NA	33						
	embedding/fining?										
	5. Length appropriate?	2	6	NA	33	33%					
B. Pools	1. Present? (e.g. not subject to severe	NA*	NA*	NA*	NA*						
	aggradation or migration?										
	2. Sufficiently deep (Max Pool	NA*	NA*	NA*	NA*						
	D:Mean Bkf>1.6)										
	3. Length Appropriate?	NA*	NA*	NA*	NA*	NA*					
C. Thalweg	Upstream of meander bend	12	20	NA	60						
-	(run/inflection) centering?										
	2. Downstream of meander	12	20	NA	60	60%					
	(glide/inflection) centering?										
D. Meanders	1. Outer bend in state of	11	20	NA	55						
	limited/controlled erosion?										
	2. Of those eroding, # w/concomitant	2	9	NA	22						
	point bar formation?										
	3. Apparent Rc within spec?	20	20	NA	100						
	4. Sufficient floodplain access and	18	20	NA	90	67%					
	relief?										
E. Bed General	1. General channel bed aggradation	NA	NA	5/85	NA	96%					
	areas (bar formation)										
	2. Channel bed degradation-areas of	NA	NA	0	NA	NA					
	increasing downcutting or head										
	cutting?										
F. Vanes	1. Free of back or arm scour?	25	31	NA	81						
	2. Height appropriate?	28	31	NA	90						
	3. Angle and geometry appear	28	31	NA	90]					
	appropriate?										
	4. Free of piping or other structural	31	31	NA	100	90%					
	failures?										
G.	1. Free of scour?	11	13	NA	85						
Wads/Boulders	2. Footing stable?	13	13	NA	100	93%					

^{*}It is not clear in the as-built plans the total number of constructed pools. The channel is comprised mostly of pool sections, holding grade, and performing adequately.